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AN ITERATIVE METHOD FOR SYSTEMS

OF NONLINEAR HYPERBOLIC EQUATIONS

JeffreyS. ScroggsI

ABSTRACT

An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic

equations is presented. Parallelism is evident at several levels. In the formation of

the iteration, the equations are decoupled, thereby providing large grain parallelism.

Parallelism may also be exploited within the solves for each equation. Convergence of

the iteration is established via a bounding function argument. Experimental results in

two-dimenslons are presented.

1 Research conducted at ICASE, NASA Langley Research Center_ Hampton, Virginia, supported by
NASA Contract No. NAS1-18605.



1. INTRODUCTION. An iterative algorithm suitable for the solution of a sys-

tem of nonlinear hyperbolicpartial differential equations in multiple dimensions is dis-

cussed. Convergence is established analytically in the continuous case when the solu-

tions are smooth; however, numerical experiments with a system of nonlinar conser-

vation laws demonstrate that convergence is achieved in the discrete case even when

the solutions have discontinuities (shocks). This method is an extension of an iterative

method for one-dlmenslonal scalar equations [H, 6] to systems of equations in multiple

dimensions.

This method dec0uples the PDEs by linearizing the convection coefficient for a

space-time domain. This provides opportunity to exploit large-grain parallelism. In

addition, the linearization allows the treatment of some terms in the equations as source

theorems, providing more freedom to c_hoose from a Wider variety of numerical methods.

This could be exploited, for example, when extending the algorithm that couples the

method of characteristics with cellular automata [8] from a scalar equation to a system

of equations [7]. Cellular automata and the method of characteristics are both sources

of parallelism.

The iteration is presented in Section 3. Convergence ofthe method, s estLblished

analytically in Section 4, and numerical experiments demonstrate that the solution

improves by more than a digit in each iteration in Section 6.

2. PROBLEM. Consider the following initial-boundary value problem

Off
.,,t,x, + n(t, cr)f 0,(I) O--'[-F U)-h--Z-- :_, =

i:I

where f = (u,,u_, ...,urn) is a vector of rn :> 1 components. Assume that the spatial

domain can be specified by a real valued function d(x) as H = {m I d(z) < 0}. The

range of the temporal variable is 0 < t < T, and the complete domain is denoted

fl = (0,T) x II = {(t,x) I A(t,m) < 0 }, where A(x,t) = td(m). The coefficients R and

F_, for i = 1 to n, are matrix-value_ functions in IR '_X'_.

Denote by Fi,j the jth row of the matrix F_ and denote the l:h component of F_,j by

fi,j,t. Similarly, rj,l denotes the component of R that is in the jth row and 1th column.

The data _°

(2) =

serve as the initial guess when t = 0 and m E H, and as the boundary data for the

portion of OH such that

(3) %bj($,m, U) :--- F,,j(t,,_,U)• grad(A) < 0.
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Here,grad(A) is the gradient of A with respect to the spatial variables. This is anal-

ogous to the inflow boundary conditions of fluid dynamics. Other types of boundary

conditions may be possible [2], but are not studied here.

3. ITERATION. From Equation (1), each component of the solution satisfies

au__.2 . auj
(4) o_ + _ fi'J'J(_' x' U)_3-_'_i_:i+ rj,j(_,x,U)uj :

i

_ _, , x CgUl m
- fi,j,l(t,:r.,u)_'=-'- - _irj,,(_.,:r.,U)u,.

i _:j Oxi t#j

Let U k = (uxk, ..., u_) be the k th iterate. The equation for the jth component is

linearized by using the most recent iterate only in the places where the the jth component

is differentiated. This results in the equation

. _uk+l
(5) " '

0--'7 + _ fi,j,j(i,:_,_ ,_
i

.rk\ k+l
+ rjj(t, z, o )uj :

- fi.j,,(i,=,r#') -
i l#j tCj

Thus, the equations for each of the iterates have been decoupled. This is analogous to

k satisfies (9.) for the portionthe Jacobi iteration for systems of linear equations. Each uj

of 0n such that ¢_'(_,x, U k-l) < 0.

Forms of the iteration other than (5) are possible and may be desirable. For exam-

ple, if parallelism is not important, then it may be advantageous to linearize but not

decouple the equations.

4. CONVERGENCE. The convergence of the iteration has its roots in the exis-

tence and uniqueness proofs of partial differential equations [1, 9, 4]. However, existence

and uniqueness are not the topics Of this paper. The iteration defined by Equation (5)

is shown to be a contraction provided the domain is restricted to regions where the

solution is sufficiently smooth and continuous. The numerical experiments of Section

6 demonstrate that the restriction on the smoothness of U is only for the sake of the

analysis, and the iteration will converge under less strict conditions. In the statement

of the theorem, _ is the closure of fl, and
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denotes the L2 norm in space.

THEOREM 4.1. Assume that Fi and R depend continuously on their arguments.

If the data aj of Equation (2) and their first derivatives are continuous and the initial

guess U ° is Lipschitz continuous on -_, then for each k there are constants C k > 0 and

A_>O

(6) I1__.+1,- _IIT < Ck(e*" -- 1)11uk=-- _jk-'llT

when 0 < t < T and for 1 < j < m and finite k >_ 1, and U k is the k th iterate of

Equation (5).

First, the boundedness and continuity of the iterates is established.

LEMMA 4.2. Assume that Fi and R depend continuously on their arguments.

Suppose the data aj of Equation (2) and their first derivatives are continuous, and the

iterate U k is Lipschitz continuous on _, then U k+ l is Lipschitz continuous for 0 < t < T.

To establish this iemma the equation governing the iterates wii] be Simplified. Then

the iterate will be shown to be bounded, and the continuity of the iterates will be

established.

Proof. Equation (5) may be written

(7) o,¢+'
-_ + gj,juj + gzdul = O,

I=l,l_j

where

= = i=l

.The Lipschitz continuity of g k andthe cpnt!nuity of the boundhry data results in the

coefficient g_,j and the su_ati0n term in the equation being bounded. Since the
k+ldomain is=b0unded:=iterate U ..... wi_ also:be-bounded.

An equation governing Ou_+l/c3xi may be derived by taking the partial derivative

of Equation (7) with respect to xi t_-obtain

(8) & -f_z j + gj,j \--_-_-j + S = O,

. k+l
gj,jk of this equation are functions of _jwhere the source term S and the coefficient

and the values and first derivatives of R, Fi, and U k. The boundedness of" _+1 has been
-t_j
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established, and the boundedness of the remaining terms follow from the assumptions

made for this lemma. Thus, the boundedness of S and g_j follow. From the boundedness

of these terms the boundedness of cqu_+l/cgzi (and hence the Lipschitz continuity of

_k+l_
j i follow. []

To establish Theorem 4.1, an equation governing the difference between iterates

is derived. Since the iterates are Lipschitz continuous and the domain is bounded,

appropriate upper and lower bounds for U _+1 will be determined. Then the difference

is shown to be bounded with solutions of ordinary differential equations.

Proof (of Theorem 4.1). The components of the difference Z k (z_, ..., k= z._), where

k . k+l k
zj = _j - uj are governed by the equation

(9) Oz_ k-l, _-1, k k _ _-1, ko---_+ Etg'_z_'-_+ (g'_- g'_j_' J+ g_,J_'+ (a,J - a,_ )_J= o.
z#j

The initial data is z](0, z) = 0. By the Mean Value Theorem

where

k k-1 = Zk-1 G kgtd -- gtd • td,

o,_s=v..,,s(t,_,0) + vJ,,,,j(t,_,v)b-_,.
i=1

Here, _r is some function bounded above and below by maz(U k-_, U k) and min(U k-_, Uk),

respectively. Thus, Equation (9) may be written as

(10) c_z_ k k _Zk-X [ k k k.uk-a ] k k-xOt + gj,_zj = • Gj,juj + y_ Gz_ _ - Y_ gt,_z_ •
l#j t#j

Using the lemma, the absolute value of the terms on the right hand side of Equation

(10) are bounded by C][]Z_-II[ , for some constant C_. In addition, the coefficient of

k is bounded above (below) by some constant )_"g(__kk). Thus, the functionszj

and

o_j= tCffllZk-lllT_*

are upper and lower bounds, respectively,for II_)ll-
maxj _, the theorem is established. []

With C k = maxjC] and _ =



Theorem 4.1 did not establish the boundedness of C k and Ak as k goes to infinity. If

these constants did grow unbounded for large k, then the size of the temporal partition

for which the iteration would converge will tend to zero. In practice, the iteration

converged in a finite number of iterations, and the effect of unbounded growth in C _

and Ak was not experienced. When these constants are assumed to be bounded, as

in the corollary below, the convergence of the iteration follows immediately from the

theorem.

COROLLARY 4.3. Assume that Fi and R depend continuously on their arguments.

Also Assume that the data aj of Equation (2) and their first derivatives are continuous

and the initial guess U ° is Lipschitz continuous on _. If there are bounds G > G k and

A > Ak for all k >= 1, then then the iteration defined by (5) converges to a solution of

(i).
Proof. From Theorem 4.1,

[I_ k+_- u_llm < 6'(e '_- l)llu_- u_-'IIT.

It is possible to choose a temporal bound 7_ such that C(e '_ - 1) < 1 when T < T, and

the iteration is a contraction.

Since the iteration is a contraction, it must converge to a fixed point U °° = U k =

U k+a. Putting U 0¢ into Equation (5), clearly V = U _ is a solution to (1)-(2). o

Thus, there are reasonable conditions under which the iteration will converge.

Stronger results would likely be possible, especially considering that the experiments

presented later in the paper do not satisfy all of the conditions of the analyticresults.

5. ALGORITHM. An algorithm based on the iteration is presented here. The

algorithm is a combination of the iteration presented in Section 3 with a temporal

partitioning and a stopping criteria.

The temporal variable may need to be partitioned into several regions. For example,

it is possible for the method to diverge if T is too large. This is manifested by the

coefficient Ck(e tx_ - 1) of Equation (6) in Theorem 4.1 becoming larger than unit. In

addition, the iteration requires that the solution be stored for the entire temporal region,

poss_Iy requiring too much memory. These problems are resolved by partitioning time

into Q sections 0 < To < T1 < ... < T o = T. The iteration will be performed on the

partition f_q = (Tq_l, Tq] × H of the domain, using the solution at time t = T__I from

the iteration on f/q-1 as the initial condition.

The stopping criteria is based on the norm of the difference between iterates at time

t = T_. When the norm is less than some user specified tolerance, then the iteration is

6
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assumed to

I.

have converged.

Initialize.

A. Set temporal partition counter to q = 1.

B. Apply initial data (2) to the solution.

II. Determine the solution on temporal partition q.

A. Doall j = 1 to n (j is the index for the elements of the solution).

0 for (Tq_l,Tq)x II.1. Determine initial guess uj
B. Initialize iteration counter k = 1.

C. Doall j = 1 to n (do one iteration).
t then1. Solve Equation (5) to obtain u i

=2. compute the norm of the difference _i
k

D. IfK k=_]j_j >TOL

1. Then increment k and go to Step C.

2. Else finished with this temporal partition.

a. Restart by using the solution at _ = Tq_l as initial conditions.

b. Increment q and goto Step II.

Algorithm 1 Iterationwith Restart.

The algorithm is independent of the the discretizationused in Step II.C.1 and

of the initialguess used in Step II.A.1 (see Algorithm i). Since the coefficientshave

nonlinear behavior,discretizationsshould bc chosen that are appropriate for nonlinear

problems. Notice that ifan explicitdiscretizationisused with a temporal partitionthat

contain only a singletime step,then the algorithm isno differentthan applying the

explicit discretization directly to the linearization of Equation (1). Thus, each temporal

partition should contain at least two time steps.

There is potential to exploit parallelism on several levels. Large-grain parallelism

is available through the decoupling of the equations, and may be further enhanced

by using domain decomposition techniques (see [10]). Smaller-grain parallelism may

be exploited by using appropriate data structures for each of the subdomains [3, 5],

and by choosing an appropriate numerical scheme to solve the PDEs. Exploitation of

parallelism is an area of further research.

6. NUMERICAL EXPERIMENTS. In this section, Algorithm 1 is used to

solve a system of nonlinear hyperbolic equations. These numerical experiments are a

demonstration of the convergence of the algorithm. The implementation of the algo-

rithm has not been optimized or parallelized; thus only the convergence results are

presented. Experiments also examine the effects of the size of the temporal partition

on the number of iterations. All the experiments were performed on an Ardent Titan,

and required less than 5 minutes execution time for each run.
7



The equationssolvedarea two-dimensional form of Burgers' equation

(11) ut + uu. + vu v = 0

(12) v, + uvx + vvu = O,

where time has the range 0 < t < 1 and the spatial domain is the unit cube II =

{(x,y) 10 > A(x,y) = t(max[(x- 1/2)2,(y- 1/2) 2] - 1/4)}. The equations are

capable of simulation of some of the physical phenomena that arise in computational

fluid dynamics. Namely, with initial and Boundary data

2.0(.5-

v = .1 + .9x,

Equations (11-12) will be used to model shocks. The data are applied for t = 0 and for

the inflow portion of II which is defined by y = 0, y = 1, and x = 1. The solution is

smooth initially, and develops a shock (see Figures 1-2). Thus, the examples satiSfy all

FIG. I. U att : .8.

of the conditions of the theoreticalresultsfor the initialpartition_I, and evolves into
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FIG. 2. V a_ _ = .8.

a nonsmooth function that violates these conditions. Thus, the experimental results

will demonstrate that the algorithm works even when some of the conditions used to

established the theory are violated.

The experiments were performed _._ing two different explicit discretizations, a

second-order MacCormack scheme [2], and a first-order upwind scheme. The upwind

scheme consists of applying a backward or forward difference based on the sign of the

coefficient of the spatial derivative being differenced.

To improve computational efficiency, the discrete analog of the L1 norm at time

t = T_ is used in place of the L2 norm in Step II.C.2. Thus,

(13)
k 1 v

]E I - k-1"-- j,p U#,p [,

p=1

k is the discrete value of componentwhere P is the number of spatial grid points and ui, v

j of iterate k. There were 25 unknowns in each direction including boundary points;

thus, the total number of points was P : 625. The time step was At : .002.

The initial guess on flq is

uO(t,X,_/) : U_(Tq--I,X,_)



and

where (u_,v _) was the last iterate for partition flq-1. This resulted in a good initial

guess as measured by the norm K 1 of the difference between the initial guess and the

first iterate (see Table i). -

Table 1. Average Number of Iterations

Number of Upwind

Time Steps K 1 [ Num Iter

20

50

100 4.69 x 10 .2

9.94 x 10-3 3.8

2.43 x 10-2 4.7

5.6

MacCormack

K 1 Num Iter

2.93 x 10 -2 4.1

7.12 x 10 -2 6.7

1.38 × 10 -1 8.6

The results in Table 1 show the effects of varying the temporal partition size on

the convergence of the method with the initial guess as doscribed above. The data are

the average over the total number of temporal! partitions. Thus, corresponding to the

number of time steps of 20, 50, and 100 ar,_ partition sizes Tq - Tq_l = .04, .1, and .2,

respectively. The resu/ts in the Number of Iterations columns are the data averaged over

all of the temporal partitions required to take the 500 time steps necessary to obtain the

Solution at T = 1. This means that thenumbers are averaged over50, 10' and 5 values

for the rows with 20, 50, and 100 number of time steps, respectively. Experiments

using a constant initial guess confirm that the additional iterati0ns required for the

larger partitions are not due to the larger beginning norm K 1. Further work in this

area is necessary to establish the reason for this trend; however, the larger computational

domain resulting from the lar_,, temporal partition is a likely cause.

Linear convergence is demonstrated by the data from numeric_,l experiments in

Table 2. A steady shock has formed in the solution by time t= .8; thus, the data in the

Table 2. Reduction in Norm for all iterations

Iteration Num Stopped Ave Reduction

2 0 6.99 x 10 -2

3 3 5.48 x 10-2

4 i 5.87 x 10-2

5 3 4.09 x 10-2

6 3 2.88 x 10-2

table reflect that the reduction in tl_e difference was still linear when the solution has

10
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large gradients that violate some of the conditions of the theorems. The tolerance TOL

for the stopping criteria was set to 2 x 10 -r, slightly lower than machine precision. The

iteration on each partition used the TOL stopping criteria. This resulted in iterations

on various temporal partitionings stopping at different iterates. The number of iterates

on a partition that stopped at the iteration number in the left column is reported in the

'Num Stopped' column. The average reduction column is thus the relative reduction

Kk/K k-i as measured over the number of times the iteration made it that far.

The experiments confirm and go beyond the analytic results. The reduction in the

error for each component of the solution in each iteration is monotonic, as predicted

by Theorem 4.1 was confirmed. The experiments went beyond the analytic results by

showing a linear reduction of slightly more than a digit of accuracy on a model problem

with a shock. Larger temporal partitions required more iterations. This indicates that

the larger partitions will require more computations, but may require fewer synchro-

nizations. To reach any conclusions, this issue could be studied once the algorithm has

been implemented in a parallel processing environment.

7. CONCLUSION. An iterative algorithm for the efficient solution of systems of

nonlinear hyperbolic equations has been discussed. The method is simple to implement,

and has parallelism that can be exploited on several levels. In this paper, convergence

was established analytically for continuous solutions. Numerical experiments demon-

strated the monotone convergence predicted by the analysis, both when the solution

was smooth, and when the problem had shocks resulting from the nonlinearities.
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